Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Korean Journal of Physical Anthropology ; : 11-20, 2009.
Article in Korean | WPRIM | ID: wpr-92720

ABSTRACT

As characterization of mitochondrial DNA (mtDNA) shows maternal inheritance and exists as more than thousands copies per cell, it is widely used for population genetics and forensic scientific field. However, mitochondrial DNA study has difficulties because heteroplasmy of mtDNA is being reported from coding and control region. In this study, we have analyzed 200 samples to examine heteroplasmy in mitochondrial DNA of Korean and Mongolian. The control region and coding region in mtDNA of blood from Koreans and Mongolians were analyzed with PCR amplication and sequencing. As a result, several heteroplasmy was observed from total 10 positions including 5 positions in coding region and 5 positions in control region, respectively. Moreover, it showed more than one heteroplasmy in coding region from 6 samples in Korean and 17 samples in Mongolian. Interestingly, heteroplasmy at 5178 position was shown in 6 samples among 23 samples. Considering that the position is important for deciding haplogroup D, we suggest that additional analysis on 4883 position needs for correct haplogrouping. Beside, we also found heteroplasmy in the other positions of 204, 4853, or 16249. Therefore, we suggest that it is required of combinatory analysis on several key nucleotide positions to obtain good results when determining mitochondrial haplogroups.


Subject(s)
Clinical Coding , Coat Protein Complex I , DNA, Mitochondrial , Genetics, Population , Polymerase Chain Reaction , Wills
2.
Korean Journal of Physical Anthropology ; : 21-29, 2009.
Article in Korean | WPRIM | ID: wpr-92719

ABSTRACT

Even though mitochondrial DNA analysis is performed in the field of molecular genetics, differences of the results exist regarding which nucleotide positions are analyzed. In this study, we strategically analyzed to find ethnic specific SNP of coding regions of mitochondrial DNA of Korean and Mongolian. Mitochondrial DNA was analyzed with PCR amplification and sequencing with 112 blood samples of Korean and 92 blood samples of Mongolian. As a result, the mutation which commonly appears both in Korean and Mongolian population is 17 nucleotide positions, and the one that shown in the only Korean is 13 nucleotide positions, the one that shown in the only Mongolian 26 nucleotide positions. However, it was thought as individual variation as most mutations are shown in a sample. Among them, it appears as 9% substitution rate in 10397, 4850 nucleotide position of Korean, whereas 12.3% or 15% substitution rate in 5108, 9950 nucleotide positions of Mongolian, respectively. Beside, we observed high level of heteroplasmy in 3546, 3553 nucleotide positions. Therefore, we suggest that these regions might be novel genetic markers for dividing mitochondrial haplogroup of Korean and Mongolian population, but additional analysis needs on several nucleotide positions in huge samples as analyzing on restricted nucleotide positions using restricted DNA samples.


Subject(s)
Clinical Coding , DNA , DNA, Mitochondrial , Genetic Markers , Molecular Biology , Polymerase Chain Reaction
3.
Korean Journal of Anatomy ; : 359-366, 2007.
Article in Korean | WPRIM | ID: wpr-651715

ABSTRACT

Many data from ancient human remains became useful by molecular approach for ancient human DNA. In anthropology, genetic sex is essential to understand marriage and burial patterns, differential mortality rates between sexes, and differential patterns by sex of disease, diet, status, and material possessions. This study was designed to determine genotype sex of 52 ancient human bones with well preserved skulls, and to compare with the orphological sex. Parts of femur and other bones were used as ancient bones excavated in Mongolia aged between bronze and Mongol period. Morphological sex was determined by Mongolian scientist, and genotype sex was determined by using biallelic marker RPS4Y for Y haplogroup. Of 52 genetic males, 10 samples were morphologically female. In conclusion, biallelic marker RPS4Y. PCR amplication method will be useful in sex determination of ancient bones.


Subject(s)
Female , Humans , Male , Anthropology , Burial , Diet , DNA , Femur , Genotype , Marriage , Mongolia , Mortality , Polymerase Chain Reaction , Skull , Y Chromosome
4.
Korean Journal of Physical Anthropology ; : 257-265, 2007.
Article in Korean | WPRIM | ID: wpr-59248

ABSTRACT

Determination of male and female is important in anthropology, archeology and forensic science. This study was designed to compare genotype sex of improved amelogenin PCR amplication method with morphological sex of ancient human bones. Sixty human skulls which lived from the Bronze Age to twenties centuries and excavated in Uzbekistan were used in this study. Morphological sex was determined by Uzbekistan scientist, and genotype sex was determined by improved amelogenin PCR amplication developed in this study. Among 20 morphological males, 13 samples (65%) were genotypical male. Among 40 morphological females, 20 samples (50%) were genotypical male. In conclusion, morphological method might be inadequate for sex determination of ancient bones. The improved amelogenin PCR method will be useful in sex determination of ancient bones.


Subject(s)
Female , Humans , Male , Amelogenin , Anthropology , Archaeology , Forensic Sciences , Genotype , Polymerase Chain Reaction , Skull , Uzbekistan
5.
Korean Journal of Physical Anthropology ; : 267-281, 2007.
Article in Korean | WPRIM | ID: wpr-59247

ABSTRACT

Ancient DNA analyses are widely used for evolutionary and phylogenetic study of mankind in anthropology and archeology. However, the DNA extraction from particularly poorly preserved ancient human samples is often unsuccessful in these analyses. In the present study, to improve the success rate of ancient DNA analysis, we introduced a high grade ancient DNA purification method using ion-exchange columns. We compared the success rate of ancient DNA analysis of this new method with that of the two methods that have been used for ancient DNA extraction, GENECLEAN(R) kit (Qbiogene) and Qiaquick column (Qiagen). Twelve ancient bone samples from Korea and Mongolia that are about 500 to 5,000 years old by an archeological estimation were used. As the DNA analysis methods, polymerase chain reaction (PCR) methods for the amplification of a mitochondrial DNA HV1 segment, a male sex determination marker DNA and M175 marker DNA that is used for the determination of O haplogroup of Y chromosome that is reportedly a common one in modern Korean people. The method developed in this study remarkably increased the success rate of DNA analysis compared with the other two methods. Using the GENECLEAN(R) kit, only two samples were amplifiable for the mitochondrial DNA, no samples for the male sex determination marker and M175 marker DNAs. Using the Qiaquick columns, nine samples were amplifiable for mitochondirial DNA, nine samples for male sex determination marker and six samples for M175 marker. The developed method allowed for the amplification of mitochondrial DNA from all samples, male sex determination marker from eight samples and M175 marker from eight samples. The results demonstrate that ion-exchange columns can be useful for the improved ancient DNA extraction in anthropology and archeology.


Subject(s)
Humans , Male , Anthropology , Archaeology , DNA , DNA, Mitochondrial , Korea , Mongolia , Polymerase Chain Reaction , Y Chromosome
6.
Experimental & Molecular Medicine ; : 230-239, 2005.
Article in English | WPRIM | ID: wpr-201938

ABSTRACT

Expression of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9), which correlates with tumor invasion and metastasis, has been known to be regulated by several intracellular signaling pathways. Since the CD9 membrane protein has been implicated in signal transduction and malignant progression of cancer cells, we examined the functional involvement of CD9 in the regulation of MMP-2 and MMP-9 expression by using stable CD9 transfectant clones of MelJuso human melanoma cells. The CD9 cDNA-transfected cells with elevated CD9 expression displayed increased MMP-2 and decreased MMP-9 expression when compared with the mock transfectant cells. Among several signal pathway inhibitors tested, SB203580 and SP600125, which inhibit p38 MAPK and JNK respectively, completely blocked the CD9-stimulated MMP-2 expression. Phosphorylation levels of p38 MAPK and c-Jun in MelJuso cells were also significantly increased by CD9 transfection. In addition, the down-regulation of p38 MAPK and JNK by siRNA transfection resulted in a decrease in MMP-2 expression by MelJuso cells. Promoter analysis and gel shift assay showed that the CD9-induced MMP-2 expression is mediated by a functional AP-1 site through interactions with AP-1 transcription factors including c-Jun. These results suggest that CD9 induces MMP-2 expression by activating c- Jun through p38 MAPK and JNK signaling pathways in human melanoma cells.


Subject(s)
Humans , Antigens, CD/metabolism , Electrophoretic Mobility Shift Assay , Enzyme Activation , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Melanoma/metabolism , Membrane Glycoproteins/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-jun/metabolism , RNA, Small Interfering/pharmacology , Signal Transduction , Skin Neoplasms/metabolism , Transcription Factor AP-1/metabolism , Transfection , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL